Скалярное произведение - Definition. Was ist Скалярное произведение
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Скалярное произведение - definition


Скалярное произведение         
  • 102x102пкс
  • вещественного евклидового пространства]]
ОПЕРАЦИЯ НАД ДВУМЯ ВЕКТОРАМИ, РЕЗУЛЬТАТОМ КОТОРОЙ ЯВЛЯЕТСЯ СКАЛЯР
Скалярное произведение векторов; Внутреннее произведение; Скалярное умножение; Квазискалярное произведение; Эрмитово скалярное произведение
Скаля́рное произведе́ние (иногда называемое внутренним произведением) — результат операции над двумя векторами, являющийся скаляром, то есть числом, не зависящим от выбора системы координат.
СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ         
  • 102x102пкс
  • вещественного евклидового пространства]]
ОПЕРАЦИЯ НАД ДВУМЯ ВЕКТОРАМИ, РЕЗУЛЬТАТОМ КОТОРОЙ ЯВЛЯЕТСЯ СКАЛЯР
Скалярное произведение векторов; Внутреннее произведение; Скалярное умножение; Квазискалярное произведение; Эрмитово скалярное произведение
векторов а и b , число (скаляр) (a,b), равное произведению длин этих векторов на косинус угла ? между ними, т. е. (a,b) = |а|·|b| cos ?. Напр., работа силы F вдоль прямолинейного отрезка S равна (F,S).
Скалярное произведение         
  • 102x102пкс
  • вещественного евклидового пространства]]
ОПЕРАЦИЯ НАД ДВУМЯ ВЕКТОРАМИ, РЕЗУЛЬТАТОМ КОТОРОЙ ЯВЛЯЕТСЯ СКАЛЯР
Скалярное произведение векторов; Внутреннее произведение; Скалярное умножение; Квазискалярное произведение; Эрмитово скалярное произведение

векторов а и b, Скаляр, равный произведению длин этих векторов и косинуса угла между ними; обозначается (а, b) (или ab). Например, работа постоянной силы F вдоль прямолинейного пути S равна (F, S). Свойства С. п.: 1) (а, b) = (b, а), 2) (αа, b) = α(а, b) (α - скаляр), 3) (a, b + c)= (a, b) + (а, с), 4) (a, a) > 0, если а ≠ 0, и (а, а) = 0, если а = 0.

Длина вектора а равна . Если (а, b) = 0, то либо а = 0, либо b = 0, либо a b. Если а = (a1, a2, a3) и b = (b1, b2, b3), то (а, b) = a1 b1 + a2b2 + a3b3 (в прямоугольных декартовых координатах). Понятие "С. п." обобщают на n-мерные векторные пространства (См. Векторное пространство), где равенство (а, b) = принимают за определение С. и. и с помощью так определённого С. п. вводят геометрическое понятия длины вектора, угла между векторами и т. д. Бесконечномерное Линейное пространство, в котором определено С. п. и выполнена аксиома полноты относительно нормы (см. Полное пространство), называют гильбертовым пространством (См. Гильбертово пространство). Гильбертовы пространства играют важную роль в функциональном анализе и квантовой механике. Для векторных пространств над полем комплексных чисел условие 1) заменяют условием (а, b) = и С. п. определяют как .

Векторы а и b можно рассматривать как Кватернионы a1i + a2j + a3k и b1i + b2j + b3k. Тогда их С. п. равно взятой с обратным знаком скалярной части произведения этих кватернионов (а векторное произведение - векторной части).

Was ist Скалярное произведение - Definition